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Abstract. In this paper we study the problem of classifying the con-
vex bodies in Rn, depending on the differentiability of their associated
quermassintegrals with respect to the one-parameter-depending family
given by the inner and outer parallel bodies. This problem was origi-
nally posed by Hadwiger in the 3-dimensional space. We characterize
one of the non-trivial classes and give necessary conditions for a convex
body to belong to the others. We also consider particular families of
convex bodies, e.g. polytopes and tangential bodies.

1. Introduction

Let Kn be the set of all convex bodies, i.e., compact convex sets in the
n-dimensional Euclidean space Rn. The subset of Kn consisting of all con-
vex bodies with non-empty interior is denoted by Kn

0 . Let Bn be the n-
dimensional unit ball, and Sn−1 the (n− 1)-dimensional unit sphere of Rn.
The volume of a set M ⊂ Rn, i.e., its n-dimensional Lebesgue measure, is
denoted by V(M), its closure by clM and its boundary by bdM .

For two convex bodies K ∈ Kn and E ∈ Kn
0 and a non-negative real

number ρ the outer parallel body of K (relative to E) at distance ρ is the
Minkowski sum K + ρE. On the other hand, for 0 ≤ ρ ≤ r(K;E) the inner
parallel body of K (relative to E) at distance ρ is the set

K ∼ ρE = {x ∈ Rn : ρE + x ⊂ K},

where the relative inradius r(K;E) of K with respect to E is defined by
r(K;E) = sup{r : ∃x ∈ Rn with x + r E ⊂ K}. When E = Bn, r(K;Bn) =
r(K) is the classical inradius (see [3, p. 59]). Clearly if ρ = 0 the original
body K is obtained. Notice that K ∼ r(K;E)E is the set of (relative)
incenters of K, usually called kernel of K with respect to E and denoted by
ker(K;E). The dimension of ker(K;E) is strictly less than n (see [3, p. 59]).
The inner parallel bodies and their properties were studied mainly by Bol
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[2], Dinghas [4] (see also [7] and [8]) and later by Sangwine-Yager [13]. The
full system of (relative) parallel bodies of K is defined by

(1.1) Kρ :=
{

K ∼ (−ρ)E for − r(K;E) ≤ ρ ≤ 0,

K + ρE for 0 ≤ ρ < ∞,

and it is a concave family, i.e., it satisfies

(1.2) (1− λ)Kρ + λKσ ⊂ K(1−λ)ρ+λσ

for λ ∈ [0, 1] and ρ, σ ∈
[
−r(K;E),∞

)
(see [16, p. 135]).

The so called Minkowski-Steiner formula (or relative Steiner formula)
states that the volume of the outer parallel body K + ρE is a polynomial of
degree n in ρ,

(1.3) V(K + ρE) =
n∑

i=0

(
n

i

)
Wi(K;E)ρi.

The coefficients Wi(K;E) are called the relative quermassintegrals of K,
and they are just a special case of the more general mixed volumes for which
we refer to [16, s. 5.1] and [6, s. 6.2, 6.3] (see Section 3). In particular, we
have W0(K;E) = V(K) and Wn(K;E) = V(E). If E = Bn, the polynomial
in the right hand side of (1.3) becomes the classical Steiner polynomial [17].
For the study of the roots of the relative Steiner polynomial as well as related
geometric polynomials see [1, 9, 10].

Analogous formulae give the value of the relative i-th quermassintegral of
the outer parallel body K + ρE, namely

(1.4) Wi(K + ρE;E) =
n−i∑
k=0

(
n− i

k

)
Wi+k(K;E)ρk,

for ρ ≥ 0 and i = 0, . . . , n. There is however no general formula for the
volume (quermassintegrals) of the inner parallel bodies of a body K (see
[11] for a detailed study of this question).

From (1.2) and the general Brunn-Minkowski theorem for relative quer-
massintegrals, which states that the (n− i)-th root of the i-th relative quer-
massintegral Wi, i = 0, . . . , n, is a concave function (see e.g. [16, p. 339]),
it is easy to see that

(1.5) ′Wi(ρ) ≥ W′
i(ρ) ≥ (n− i)Wi+1(ρ)

for i = 0, . . . , n−1, where ′Wi and W′
i denote, respectively, the left and right

derivatives of the function Wi(ρ) := Wi(Kρ;E). It is well known (see e.g. [2,
12]) that the volume is always differentiable and V′(ρ) = nW1(ρ). Moreover,
if ρ ≥ 0 then it is clear from (1.4) that all quermassintegrals are differentiable
at ρ (notice that in the case ρ = 0 we speak about differentiability from the
right) and W′

i(ρ) = (n − i)Wi+1(ρ). The question arises for which convex
bodies equalities hold in (1.5) for the full range −r(K;E) ≤ ρ < ∞. With
the previous notation we introduce the following definition.
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Definition 1.1. Let E ∈ Kn
0 . A convex body K ∈ Kn belongs to the class

Rp, 0 ≤ p ≤ n− 1, if for all 0 ≤ i ≤ p, and for −r(K;E) ≤ ρ < ∞ it holds

(1.6) ′Wi(ρ) = W′
i(ρ) = (n− i)Wi+1(ρ).

Since V′(ρ) = nW1(ρ) the class R0 = Kn is the family of all convex bodies
in Rn. Moreover Ri+1 ⊂ Ri, i = 0, . . . , n − 2, and all these inclusions are
strict, as follows from Theorem 1.3 and the fact that there exist i-tangential
bodies of E which are not (i + 1)-tangential bodies of E (see Section 4 for
the definition).

The problem of determining the convex bodies belonging to the class Rp

was originally posed and studied by Hadwiger [7] in the 3-dimensional case
and for E = Bn. Here we consider the general n-dimensional problem. From
now on E ∈ Kn

0 will be a fixed convex body (with interior points). First we
determine the convex bodies belonging to the smallest class, i.e., Rn−1:

Theorem 1.1. The only sets in Rn−1 are the outer parallel bodies of k-di-
mensional convex bodies, for 0 ≤ k ≤ n− 1, i.e.,

Rn−1 =
{
K = L + ρE : L ∈ Kn, dim L ≤ n− 1, ρ ≥ 0

}
.

For each of the remaining classesRp, p = 1, . . . , n−2, necessary conditions
for a convex body to lie in it are stated in terms of the support function
h of the so called relative form body of Kρ, denoted by K∗

ρ , the mixed
area measures and the set of p-extreme normal vectors of Kρ, Up(Kρ); see
Section 2 for precise definitions.

Theorem 1.2. Let K ∈ Kn and let E ∈ Kn
0 be a regular and strictly convex

body. If K ∈ Rp\Rn−1, 0 ≤ p ≤ n − 2, then for all ρ ∈
(
−r(K;E), 0

]
the

following holds:
i.a) h(K∗

ρ , u) = h(E, u) for all u ∈ supp S
(
Kρ[n − i − 1], E[i]; ·

)
and

i = 0, . . . , p.
i.b) h(K∗

ρ , u) = h(E, u) for all u ∈ clUp(Kρ).
ii) If p 6= 0, then S

(
Kρ[n−i−1], E[i]; ·

)
= S

(
K∗

ρ ,Kρ[n−i−1], E[i−1]; ·
)

for i = 1, . . . , p.
iii) supp S

(
K∗

ρ [n−1]; ·
)
∪
(⋃p

i=0 supp S
(
Kρ[n−i−1], E[i]; ·

))
⊂ clU0(Kρ).

iv) clU0(Kρ) = clU1(Kρ) = · · · = clUp(Kρ).

Moreover, we prove that all the above conditions are equivalent for any
convex body K ∈ Kn

0 , see Lemma 2.2 in Section 2.
Theorem 1.1 and Theorem 1.2 are proved in Section 3. On the other

hand, Theorem 1.2 allows to exclude convex sets from the classes Rp; e.g.,
we prove that there are no polytopes lying in Rp, p = 1, . . . , n − 1, when
E ∈ Kn

0 is a regular and strictly convex body, see Corollary 3.2.
Finally, Section 4 is devoted to study the so called tangential bodies; for a

definition see also Section 4. First we determine the tangential bodies lying
in each class. Then we get a new necessary condition for a convex body K
to lie in Rp, now in terms of the quermassintegrals of K and its form body.
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Theorem 1.3. A tangential body K ∈ Kn of E lies in the class Rp if and
only if K is an (n− p− 1)-tangential body of E.

Theorem 1.4. Let K ∈ Kn
0 and write r = r(K;E). If K ∈ Rp, 0 ≤ p ≤

n− 1, then

Wp(K;E)−Wp(K−r;E) ≤ Wp+1(K∗;E)
−1

n−p−1(
Wp+1(K;E)

n−p
n−p−1 −

[
Wp+1(K;E)

1
n−p−1 − rWp+1(K∗;E)

1
n−p−1

]n−p
)

.

(1.7)

Equality holds if and only if K is homothetic to an (n − p − 1)-tangential
body of E.

We remark that this result was already proved for the class R0 in [14,
Theorem 19].

2. Preliminary results

In this section we state some preliminary lemmas which will be needed
in the proof of Theorem 1.2. First we need some additional definitions and
notation. As usual in the literature, we denote by h(K, u) = sup

{
〈x, u〉 :

x ∈ K
}
, u ∈ Rn, the support function of K ∈ Kn (see e.g. [16, s. 1.7]).

For convex bodies K1, . . . ,Km ∈ Kn and real numbers ρ1, . . . , ρm ≥ 0, the
volume of the linear combination ρ1K1 + · · · + ρmKm is expressed as a
polynomial of degree n in the variables ρ1, . . . , ρm,

V
(
ρ1K1 + · · ·+ ρmKm

)
=

m∑
i1=1

· · ·
m∑

in=1

V(Ki1 , . . . ,Kin)ρi1 · ... · ρin .

The coefficients V(Ki1 , . . . ,Kin) are the mixed volumes of K1, . . . ,Km. This
formula (the mixed volumes) extends the relative Steiner formula (1.3) (the
relative quermassintegrals). Moreover, if K1, . . . ,Kn−1 ∈ Kn, the mixed sur-
face area measure S(K1, . . . ,Kn−1; ·) is the unique finite Borel measure on
Sn−1 such that

(2.1) V(K, K1, . . . ,Kn−1) =
1
n

∫
Sn−1

h(K, u) dS(K1, . . . ,Kn−1;u).

For the sake of brevity we will use the abbreviation
(
K1[r1], . . . ,Km[rm]

)
≡(

K1,
(r1). . . ,K1, . . . ,Km, (rm). . . ,Km

)
. For a deep study of mixed volumes and

mixed surface area measures we refer to [16, s. 5.1].
We write N(K, x) to denote the normal cone of K at x ∈ bd K, i.e.,

the set of all outer normal vectors of K at x (with the zero vector). A
vector u ∈ Sn−1 is an r-extreme normal vector of K if we cannot write
u = u1 + · · · + ur+2, with ui linearly independent normal vectors at one
and the same boundary point of K. We denote the set of r-extreme normal
vectors of K by Ur(K). Clearly each r-extreme normal vector is also an s-
extreme one for r < s ≤ n−1. This notion admits a generalization that will
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be used later, namely, the one of (K1, . . . ,Kn−1)-extreme normal vector, for
K1, . . . ,Kn−1 ∈ Kn. Since this definition is a bit more involved we omit it
here. See [16, pp. 74–77] for precise definitions and properties. We just will
need the following property: for K ∈ Kn and E regular, u is an r-extreme
normal vector of K if and only if u is

(
K[n− 1− r], E[r]

)
-extreme.

Finally the (relative) form body of a convex body K ∈ Kn
0 with respect to

E, denoted by K∗, is defined as

K∗ =
⋂

u∈U0(K)

{
x : 〈x, u〉 ≤ h(E, u)

}
.

We start by proving a relation between the 0-extreme normal vectors of
a convex body K and its form body K∗ with respect to E. In [13, Lemma
4.6, p. 75] it is shown that

(2.2) U0(K∗) ⊂ clU0(K)

for any convex body E ∈ Kn
0 . Here we prove that equality holds under

certain restrictions.

Lemma 2.1. Let E ∈ Kn
0 be a regular convex body. Then for any K ∈ Kn

it holds

(2.3) U0(K∗) = clU0(K).

Proof. First we prove that U0(K) ⊂ U0(K∗). We will use the following
characterization of 0-extreme normal vectors (see [13, Lemma 2.3, p. 20]):
u ∈ U0(K) if and only if for

(2.4) u1, u2 ∈ Sn−1 and α, β > 0 such that u = αu1 + βu2

it holds h(K, u) < αh(K, u1) + βh(K, u2).
Thus, let u ∈ U0(K) and let u1, u2 ∈ Sn−1 and α, β > 0 as in (2.4). Since

u ∈ U0(K), by the definition of form body (with respect to E) it holds that
h(E, u) = h(K∗, u). On the other hand, since E is regular, U0(E) = Sn−1,
and then u is also a 0-extreme normal vector of E. Hence

h(K∗, u) = h(E, u) < αh(E, u1) + βh(E, u2) ≤ αh(K∗, u1) + βh(K∗, u2),

where the last inequality follows from E ⊂ K∗. Using the above characteri-
zation we get u ∈ U0(K∗).

Now we prove (2.3). By (2.2) we just have to see that U0(K∗) ⊃ clU0(K).
Thus, let u ∈ clU0(K) and suppose that u 6∈ U0(K∗).

We take a sequence (uk)k∈N ⊂ U0(K) with uk → u for k →∞. Since we
know that U0(K) ⊂ U0(K∗) then uk ∈ U0(K∗) for all k ∈ N and hence, by
definition of form body, we get h(E, uk) = h(K∗, uk) for all k ∈ N. Therefore
h(E, u) = h(K∗, u) by the continuity of the support function. It assures that
there exists x ∈ bd K∗ ∩ bd E such that u ∈ N(K∗, x) ∩N(E, x).

Since we suppose that u 6∈ U0(K∗) then by definition of 0-extreme normal
vector, u can be written as u = u1 +u2 with u1, u2 6= u linearly independent
normal vectors at the same boundary point x ∈ bd K∗, which implies that
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dim N(K∗, x) ≥ 2. Notice however that dim N(E, x) = 1 since u ∈ U0(E)
(by the regularity of E, U0(E) = Sn−1 and then u ∈ U0(E)). On the other
hand it is clear that dim N(E, x) ≥ dim N(K∗, x) because E ⊂ K∗. Hence
we get dim N(E, x) ≥ 2, a contradiction. It shows that u ∈ U0(K∗). �

Remark 2.1. Using an analogous argument as in the proof of Lemma 2.1
it is shown that any u ∈ Sn−1 such that h(K∗, u) = h(E, u) is a 0-extreme
normal vector of K∗.

The following lemma states the equivalence between all conditions in The-
orem 1.2 for any convex body K ∈ Kn

0 .

Lemma 2.2. Let K ∈ Kn
0 and let E ∈ Kn

0 be a regular and strictly convex
body. For 0 ≤ p ≤ n− 2, the following conditions are equivalent:

i.a) h(K∗
ρ , u) = h(E, u) for all u ∈ supp S

(
Kρ[n − i − 1], E[i]; ·

)
and

i = 0, . . . , p.
i.b) h(K∗

ρ , u) = h(E, u) for all u ∈ clUp(Kρ).
ii) If p 6= 0, then S

(
Kρ[n−i−1], E[i]; ·

)
= S

(
K∗

ρ ,Kρ[n−i−1], E[i−1]; ·
)

for i = 1, . . . , p.
iii) supp S

(
K∗

ρ [n−1]; ·
)
∪
(⋃p

i=0 supp S
(
Kρ[n−i−1], E[i]; ·

))
⊂ clU0(Kρ).

iv) clU0(Kρ) = clU1(Kρ) = · · · = clUp(Kρ).

Proof. Property (i.b) is just a reformulation of (i.a). In fact, since E is
regular and strictly convex, supp S

(
Kρ[n− i−1], E[i]; ·

)
is the closure of the

set of
(
Kρ[n − i − 1], E[i]

)
-extreme normal vectors (see [15, pp. 135–136]),

which is the set clUi(Kρ), i.e.,

(2.5) supp S
(
Kρ[n− i− 1], E[i]; ·

)
= clUi(Kρ),

i = 0, . . . , p. Since Ui(Kρ) ⊂ Up(Kρ) for all i = 0, . . . , p − 1 we get the
equivalence between properties (i.a) and (i.b).

Now we prove that (i.a) is equivalent to (ii). Since K, E ∈ Kn
0 , then the

mixed volumes V
(
K∗

ρ [2],Kρ[n−i−1], E[i−1]
)
,V
(
Kρ[n−i−1], E[i+1]

)
> 0

for i = 1, . . . , p. Under this assumption, since E is a regular and strictly
convex body and i ≥ 1, results by Schneider [15, pp. 134–135] show that
(i.a) implies that S

(
K∗

ρ ,Kρ[n− i− 1], E[i− 1]; ·
)

= S
(
Kρ[n− i− 1], E[i]; ·

)
.

This proves property (ii).
Conversely, we now assume that for i = 1, . . . , p, S

(
Kρ[n− i−1], E[i]; ·

)
=

S
(
K∗

ρ ,Kρ[n−i−1], E[i−1]; ·
)
. Then using the formula for the mixed volumes

given in (2.1) we get∫
Sn−1

h(K∗
ρ , u) dS

(
Kρ[n− i− 1], E[i];u

)
= nV

(
K∗

ρ ,Kρ[n− i− 1], E[i]
)

=
∫

Sn−1

h(E, u) dS
(
K∗

ρKρ[n− i− 1], E[i− 1];u
)

=
∫

Sn−1

h(E, u) dS
(
Kρ[n− i− 1], E[i];u

)
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and therefore

(2.6)
∫

Sn−1

[
h(K∗

ρ , u)− h(E, u)
]
dS
(
Kρ[n− i− 1], E[i];u

)
= 0.

Since E ⊂ K∗
ρ and hence h(K∗

ρ , u) ≥ h(E, u), we get that (2.6) is equivalent
to h(K∗

ρ , u) = h(E, u) for all u ∈ supp S
(
Kρ[n−i−1], E[i]; ·

)
and i = 0, . . . , p.

This proves (i.a).
Now we prove that (i.a) implies (iii). In [13, p. 48, Lemma 3.5] it is shown

that for each 0 ≤ p ≤ n − 1 the derivative of Wp exists almost everywhere
in −r(K;E) < ρ ≤ 0 and

(2.7) W′
p(ρ) ≥ (n− p)V

(
Kρ[n− p− 1],K∗

ρ , E[p]
)
.

In particular, when p = 0 we get

(2.8) V′(ρ) ≥ nV
(
Kρ[n− 1],K∗

ρ

)
≥ nV

(
Kρ[n− 1], E

)
,

where the second inequality follows from the monotonicity of the mixed
volumes (cf. e.g. [6, p. 97]) and E ⊂ K∗

ρ . Since the volume is differentiable
and V′(ρ) = nW1(ρ) = nV

(
Kρ[n − 1], E

)
, we have equalities in (2.8), and

hence we can assure that any convex body K ∈ Kn
0 satisfies

V
(
K[n− 1], E

)
= V

(
K[n− 1],K∗).

In particular, the above relation applied to the form body K∗
ρ assures that

V
(
K∗

ρ [n− 1], E
)

= V(K∗
ρ). Using again the formula for the mixed volumes

given by (2.1) we get that for any K ∈ Kn
0 it holds that h(K∗

ρ , u) = h(E, u)
for all u ∈ supp S

(
K∗

ρ [n− 1]; ·
)
. This condition joined to (i.a) gives

h(K∗
ρ , u) = h(E, u) for all

u ∈ supp S
(
K∗

ρ [n− 1]; ·
)
∪

(
p⋃

i=0

supp S
(
Kρ[n− i− 1], E[i]; ·

))
.(2.9)

On the other hand it is clear that since E is regular then h(K∗
ρ , u) = h(E, u)

if and only if u ∈ U0(K∗
ρ). Moreover by using Lemma 2.1 we know that

U0(K∗
ρ) = clU0(Kρ) and hence we have h(K∗

ρ , u) = h(E, u) if and only if
u ∈ clU0(Kρ). From here using (2.9) we get the required property (iii).

In order to prove (iii) implies (iv), notice that since E is regular and
strictly convex then supp S

(
Kρ[n− i−1], E[i]; ·

)
= clUi(Kρ), for i = 0, . . . , p

(cf. (2.5)). Hence we get from (iii) that in particular clUp(Kρ) ⊂ clU0(Kρ).
Since it always holds that U0(Kρ) ⊂ · · · ⊂ Up(Kρ), we obtain (iv).

It remains to show that (iv) implies (i.a). Using again the identity
supp S

(
Kρ[n − i − 1], E[i]; ·

)
= clUi(Kρ) for i = 0, . . . , p (cf. (2.5)), then

we get from (iv) that for all i = 1, . . . p

supp S
(
Kρ[n− i− 1], E[i]; ·

)
= suppS

(
Kρ[n− 1]; ·

)
.

On the other hand, since E is regular we know that h(K∗
ρ , u) = h(E, u) if

and only if u ∈ U0(K∗
ρ) = clU0(Kρ) (cf. (2.3)). Thus if for i ∈ {0, . . . , p}
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u ∈ supp S
(
Kρ[n− i− 1], E[i]; ·

)
, then u ∈ supp S

(
Kρ[n− 1]; ·

)
= clU0(Kρ)

(cf. (2.5)), which implies that h(K∗
ρ , u) = h(E, u) and shows (i.a). �

3. Convex bodies lying in the classes Rp

We start characterizing the smallest class, Rn−1.

Proof of Theorem 1.1. For the sake of brevity we write r = r(K;E). If K
is a k-dimensional convex body, k ≤ n − 1, then r = 0 and the full system
of parallel bodies is reduced to the family of outer parallel sets. Hence the
equalities in (1.6) trivially hold for all i = 0, . . . , n − 1 and we have that
K ∈ Rn−1. Thus we suppose that K ∈ Kn

0 , which implies that r > 0.
If K = L + ρ0E with L ∈ Kn, dim L ≤ n − 1, and ρ0 > 0, then clearly

r = ρ0 and the inner parallel body Kρ = L +
(
ρ0 − |ρ|

)
E for −ρ0 ≤ ρ ≤ 0.

Moreover K−r = L. Then it is not difficult to see that

Wi(ρ) =
n−i∑
k=0

(
n− i

k

)
Wi+k(K;E)(−|ρ|)k =

n−i∑
k=0

(
n− i

k

)
Wi+k(K;E)ρk

for all i = 0, . . . n and −ρ0 ≤ ρ ≤ 0, and clearly all the quermassintegrals
are differentiable and W′

i(ρ) = (n − i)Wi+1(ρ), for i = 0, . . . , n − 1. Hence
K ∈ Rn−1.

Conversely, if K ∈ Rn−1 we have in particular that Wn−1 is differentiable
and W′

n−1(ρ) = Wn(K;E) = V(E), for all ρ ∈ [−r, 0]. Then integration
with respect to ρ yields

Wn−1(ρ)−Wn−1(−r) =
∫ ρ

−r
W′

n−1(s) ds =
∫ ρ

−r
V(E) ds = V(E)(ρ + r),

for all ρ ∈ [−r, 0]. In particular, when ρ = 0 we get Wn−1(0)−Wn−1(−r) =
rV(E), i.e.,

(3.1) Wn−1(K;E) = Wn−1(K−r;E)+rWn−1(E;E) = Wn−1(K−r+rE;E),

where the last equality follows from the (Minkowski) linearity of Wn−1(K;E)
in its first variable (see [16, p. 279]). Since K−r +rE ⊂ K we get from (3.1)
that K−r + rE = K, which proves the required statement. �

For the rest of this section E ∈ Kn
0 will be a regular and strictly convex

body. We prove Theorem 1.2 by showing that K ∈ Rp implies property
(i.a). From Lemma 2.2 we get the remaining statements.

Proof of Theorem 1.2. First notice that by hypothesis K 6∈ Rn−1. Since all
k-dimensional convex bodies, k ≤ n − 1, are contained in Rn−1, we have
K ∈ Kn

0 . Hence we can apply Lemma 2.2 and prove just property (i.a).
Since E ⊂ K∗

ρ , the monotonicity of the mixed volumes implies that

(3.2) V
(
Kρ[n− p− 1],K∗

ρ , E[p]
)
≥ Wp+1(ρ)

and hence we get from (2.7) that

W′
p(ρ) ≥ (n− p)Wp+1(ρ).
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Thus, if K ∈ Rp then we have equality in the previous inequality and also in
(3.2). Moreover since K ∈ Rp ⊂ · · · ⊂ R0 we get V

(
Kρ[n−i−1],K∗

ρ , E[i]
)

=
Wi+1(ρ) for all i = 0, . . . , p. Using the formula for the mixed volumes given
by (2.1) we can write

0 = nV
(
Kρ[n− i− 1],K∗

ρ , E[i]
)
− nV

(
Kρ[n− i− 1], E[i + 1]

)
=
∫

Sn−1

[
h(K∗

ρ , u)− h(E, u)
]
dS
(
Kρ[n− i− 1], E[i];u

)
,

which is equivalent to h(K∗
ρ , u) = h(E, u) for all u ∈ supp S

(
Kρ[n − i − 1],

E[i]; ·
)
, for i = 0, . . . , p. This proves (i.a) and the theorem. �

Remark 3.1. If K ∈ Rp\Rn−1, 1 ≤ p ≤ n − 2, then property (ii) of
Theorem 1.2 assures that the surface area measures S

(
Kρ[n− i− 1], E[i]; ·

)
and S

(
K∗

ρ ,Kρ[n− i− 1], E[i− 1]; ·
)

coincide. Hence we can rewrite (i.a) as

h(K∗
ρ , u) = h(E, u) for u ∈ supp S

(
K∗

ρ ,Kρ[n− i− 1], E[i− 1]; ·
)

for i = 1, . . . , p. We also can write that

clUi(Kρ) = cl
{(

Kρ[n− i− 1], E[i]
)
-extreme normal vectors

}
= suppS

(
Kρ[n−i−1], E[i]; ·

)
=supp S

(
K∗

ρ ,Kρ[n−i−1], E[i−1]; ·
)
.

Using (2.1) the following corollary is an immediate consequence of (ii) in
Theorem 1.2.

Corollary 3.1. If K ∈ Rp\Rn−1, 1 ≤ p ≤ n− 2, then for any convex body
L ∈ Kn and for all ρ ∈

(
−r(K;E), 0

]
it holds

V
(
L,K∗

ρ ,Kρ[n− i− 1], E[i− 1]
)

= V
(
L,Kρ[n− i− 1], E[i]

)
, i = 1, . . . , p.

Replacing L by Kρ, K∗
ρ and E in the previous expression we get that the

relations

(3.3) Wi+1(ρ) = V
(
K∗

ρ ,Kρ[n−i−1], E[i]
)

= V
(
K∗

ρ [2],Kρ[n−i−1], E[i−1]
)

hold for all i = 1, . . . , p. In particular, we have equality in the Aleksandrov-
Fenchel inequality for the convex bodies K∗

ρ and E:

V
(
K∗

ρ ,Kρ[n− i− 1], E[i]
)2

= V
(
K∗

ρ [2],Kρ[n− i− 1], E[i− 1]
)
V
(
Kρ[n− i− 1], E[i + 1]

)
.

Using Theorem 1.2 the family of polytopes can be excluded from all the
classes Rp, p = 1, . . . , n− 1.

Corollary 3.2. There are no polytopes in Rp, for all 1 ≤ p ≤ n− 1.

Proof. Since Rn−1 ⊂ · · · ⊂ R1 it is enough to show the assertion for the
class R1. Let P ∈ Kn be a convex polytope lying in the class R1 and let
ρ ∈

(
−r(P ;E), 0

]
. Theorem 1.2, item (i.b), assures that

(3.4) h(P ∗
ρ , u) = h(E, u) for all u ∈ clU1(Pρ).
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On the other hand it is clear that Pρ is also a polytope, and moreover P ∗
ρ

is a polytope all whose (n − 1)-faces touch E. Then h(P ∗
ρ , u) = h(E, u) if

and only if u is a 0-extreme normal vector of P ∗
ρ . Hence from (3.4) we can

assure that U1(Pρ) ⊂ U0(P ∗
ρ ).

Let u ∈ U1(Pρ)\U0(Pρ). Notice that such a vector u exists since Pρ is
a polytope. By definition of 0-extreme normal vector u can be written as
u = u1 +u2 with u1, u2 6= u linearly independent normal vectors at the same
boundary point of P . Then the 2-dimensional cone determined by u1 and u2

contains u in its relative interior and provides a 1-dimensional neighborhood
V ⊂ Sn−1 of u. Moreover V ⊂ U1(Pρ) ⊂ U0(P ∗

ρ ). This leads to a contra-
diction, since we have shown that there exists a relative 1-dimensional open
set V ⊂ Sn−1 of 0-extreme normal vectors of the polytope P ∗

ρ . �

Remark 3.2. Notice that if we remove the hypothesis of regularity and
strict convexity for E then Corollary 3.2 is not true, since trivially there are
polytopes in the classes Rp; in fact, just taking E a polytope then E ∈ Rn−1.

4. Tangential bodies in Rp

A convex body K ∈ Kn containing the convex body E ∈ Kn
0 is called a

p-tangential body of E, p ∈ {0, . . . , n−1}, if each (n−p−1)-extreme support
plane of K supports E, p = 0, . . . , n− 1 [16, pp. 75–76]. Here a supporting
hyperplane is said to be p-extreme if its outer normal vector is a p-extreme
direction. For further characterizations and properties of p-tangential bodies
we refer to [16, Section 2.2].

So a 0-tangential body of E is just the body E itself and each p-tangential
body of E is also a q-tangential body for p < q ≤ n − 1. A 1-tangential
body is usually called cap-body, and it can be seen as the convex hull of E
and countably many points such that the line segment joining any pair of
those points intersects E. An (n− 1)-tangential body will be briefly called
a tangential body.

The following theorem shows the close relation existing between the inner
parallel bodies and the tangential bodies.

Theorem 4.1 (Schneider [16, pp. 136–137]). Let K ∈ Kn
0 and −r(K;E) <

ρ < 0. Then Kρ is homothetic to K if, and only if, K is homothetic to a
tangential body of E.

We will make also use of the following result, which gives a characteriza-
tion of n-dimensional p-tangential bodies in terms of the quermassintegrals.

Theorem 4.2 (Favard [5], [16, p. 367]). Let K, E ∈ Kn
0 , E ⊂ K, and let

p ∈ {0, . . . , n − 1}. Then W0(K;E) = W1(K;E) = · · · = Wn−p(K;E) if
and only if K is a p-tangential body of E.

Now we prove Theorem 1.3.

Proof of Theorem 1.3. Since K is a tangential body of E we have r(K;E) =
1 and we know from the proof of Theorem 4.1 that Kρ =

(
1− |ρ|

)
K. Hence
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Wi(ρ) =
(
1 − |ρ|

)n−iWi(K;E) = (1 + ρ)n−iWi(K;E) for all i = 0, . . . , n
and then

(4.1) W′
i(ρ) = (n− i)(1 + ρ)n−i−1Wi(K;E).

We suppose first that K ∈ Rp. Then W′
i(ρ) = (n−i)Wi+1(ρ), for i = 0, . . . , p

and thus
W′

i(ρ) = (n− i)Wi+1(Kρ;E) = (n− i)Wi+1

(
(1 + ρ)K;E

)
= (n− i)(1 + ρ)n−i−1Wi+1(K;E)

for i = 0, . . . , p. The last two expressions for the derivative W′
i(ρ) give

Wi(K;E) = Wi+1(K;E) for i = 0, . . . , p. This proves (see Theorem 4.2)
that K is a (n− p− 1)-tangential body of E.

Conversely, if K is an (n−p−1)-tangential body of E we have Wi(K;E) =
Wi+1(K;E) for i = 0, . . . , p. Then we get from (4.1) that

W′
i(ρ) = (n− i)(1 + ρ)n−i−1Wi+1(K;E) = (n− i)Wi+1(ρ)

for i = 0, . . . , p, which shows that K ∈ Rp. �

We finish the section with proving inequality (1.7).

Proof of Theorem 1.4. Let ρ ∈ [−r, 0] with r = r(K;E). It is known [13,
Lemma 2.10, p. 36] that Kρ + |ρ|K∗ ⊂ K. Then for all 0 ≤ i ≤ n

Wi(K;E)
1

n−i ≥ Wi

(
Kρ + |ρ|K∗;E

) 1
n−i ≥ Wi(Kρ;E)

1
n−i + |ρ|Wi(K∗;E)

1
n−i

= Wi(ρ)
1

n−i − ρWi(K∗;E)
1

n−i ,

where the last inequality comes from Brunn-Minkowski’s inequality for rel-
ative quermassintegrals. Since K ∈ Rp we have W′

p(ρ) = (n − p)Wp+1(ρ),
and taking i = p + 1 in the previous inequality we can integrate from −r to
0 with respect to ρ:

1
n− p

[
Wp(0)−Wp(−r)

]
=
∫ 0

−r
Wp+1(ρ) dρ

≤
∫ 0

−r

(
Wp+1(K;E)

1
n−p−1 + ρWp+1(K∗;E)

1
n−p−1

)n−p−1

=
1

n− p

(
Wp+1(K;E)

1
n−p−1 + ρWp+1(K∗;E)

1
n−p−1

)n−p

Wp+1(K∗;E)
1

n−p−1

∣∣∣∣∣∣∣
0

−r

,

from which we get directly (1.7). Equality holds in this inequality if and only
if both K = Kρ + |ρ|K∗ and equality holds in Brunn-Minkowski’s inequality
for every 0 ≤ i ≤ p + 1 and −r ≤ ρ ≤ 0.

We suppose first that equality holds in (1.7). From the Brunn-Minkowski
equality case we know that K and K∗ are homothetic, and this is the case if
and only if K is homothetic to a tangential body of E (see [16, p. 321]). Since
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K ∈ Rp Theorem 1.3 assures that then K is homothetic to an (n− p− 1)-
tangential body of E. It just remains to see that any (n− p− 1)-tangential
body K of E satisfies K = Kρ + |ρ|K∗. In fact, if K is such a set then
Kρ =

(
1−|ρ|/r

)
K and clearly K∗ = (1/r)K. Therefore K =

(
1−|ρ|/r

)
K +(

|ρ|/r
)
K = Kρ + |ρ|K∗.

Conversely, if K is homothetic to an (n− p− 1)-tangential body of E, we
know that K = Kρ + |ρ|K∗ and that K, K∗ are homothetic, which implies
equality in Brunn-Minkowski’s inequality. So we get equality in (1.7). �
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